【AREA-introduction】Causal Science
causal AI learning (building)
Background knowledges
基于约束的方法
Graph
3 kinds:
chain X->Z->Y
fork X<-Z->Y
Z是X和Y的共因,如果X发生改变,Y很有可能也应该改变
when the middle Z is given,X and Y won’t be affected anymore.collider x->Z<-Y
在没有given Z时,X和Y是独立的
when the middle Z is given,X/Y would need to change to make sure Z won’t change while Y/X is changingPath can’t be blocked by S(node set).
blocked:
- given Z when chain/fork
- not given Z(and its son nodes) when collider
D-Seperation:
when every path between X and Y is blocked by ZMarkovian assumption
Faithfulness assumption
由于以上两个假设我们可以通过given数据推出对应的Markov等价类
典型算法
IC、PC、FCI、RFCI、GFCI
基本思想是1.通过数据找到条件独立性列表(cond. independences) 2.通过条件独立性列表得到DAGs有向无环图
Markov Equivalence Class马尔科夫等价类
- 可以由同一组d-seperation得到的图s
- 马尔科夫等价类中的图有相同的骨架skeleton和V-结构
比如chain和fork的3中图就有相同的V结构